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A formalism is presented that incorporates the entirety of all field-based molecular similar-
ity indices of general form Sij = �ij /h(�ii ,�jj ), where the numerator is given by the inner
product or “overlap” of field functions Fi and Fj corresponding to the ith and j th molecules,
respectively, and the denominator is given by a suitable mean function of the self-similarities
�ii and�jj . This family of similarity indices includes the index initially introduced by Carbó
nearly twenty years ago, where h(�ii,�jj ) is taken to be the geometric mean of�ii and�jj ,
and the well-known indices due to Hodgkin and Richards, and Petke, where h(�ii,�jj ) is
taken to be the arithmetic mean and maximum of �ii and �jj , respectively. Two new in-
dices based upon the harmonic mean and minimum of �ii and �jj are also defined, and it
is demonstrated that the entire set of field-based similarity indices can be generated from a
one-parameter family of functions, called generalized means, through proper choice of the
parameter value and suitable limiting procedures. Ordering and rigorous bounds for all of the
indices are described as well as a number of inter-relationships among the indices. The gen-
eralization of field-based similarity indices, coupled with the relationships among indices that
have been developed in the present work, place the basic theory of these indices on a more uni-
fied and mathematically rigorous footing that provides a foundation for a better understanding
of the quantitative aspects of field-based molecular similarity.

1. Introduction

Similarity is a ubiquitous concept that permeates virtually every field of chem-
istry [1–3]. While there are many ways in which similarity is utilized in chemistry,
the focus here is on molecular similarity, or more specifically, on the question of how
similar one molecule is to another. Numerous techniques have been developed and ap-
plied to this problem [4–63]. The present work is concerned with methodology that
is based on similarity indices computed from molecular fields. Early work by Carbó
and co-workers [17,18] defined similarity in terms of the electron densities, ρi and ρj ,
of the two molecules being compared. The matching function, or similarity measure,
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employed is the inner product of ρi and ρj ,∫
ρiρj dV

which measures the “overlap” of the electron densities in terms of their relative posi-
tions and orientations. Carbó et al. obtained numerical values of the similarity from a
normalized similarity measure or similarity index∫

ρiρj dV√∫
ρ2
i dV ·

√∫
ρ2
j dV

which is given as the ratio of the similarity measure to the product of the norms of the
respective electron densities, i.e., self-similarity measures.

In the Carbó approach, the electron density surrounding each molecule may be
viewed as a steric field that describes the size and shape of the molecule [19]. Comparing
two molecules in this way gives their steric similarity. Subsequently, a computationally
more tractable approach to steric similarity was outlined by Good and Richards [20],
who proposed a steric field composed of atom-centered spherical Gaussian functions to
represent individual atomic densities. Interestingly, many of the early applications of
field-based similarity that followed Carbó’s seminal work dealt solely with electrostatic
similarity based upon molecular electrostatic potential (MEP) fields [21–29]. Initially,
grid-based methods were used. In these methods, the MEP at the kth grid point, rk, for
a given molecule is approximated by the classical point-charge formula

∑
m

qm

rk − Rm

,

where qm is the partial charge of the mth atom located at Rm. The electrostatic similarity
measure is then computed as a sum over grid points of the product of MEPs of the
molecules being compared.1 Currently, a more computationally efficient formulation of
this approach is based upon an approximation of 1/(rk−Rm) by a linear combination of
spherical Gaussian functions, and replacement of the sum over grid points by integration
of the product of MEPs over all space [30].

Other molecular fields or pseudo-fields, such as lipophilic potential fields [31–37],
have been used in addition to the steric and electrostatic fields noted above. In addi-
tion, a number of similarity indices of the same general form as that of the Carbó index
have been defined by modifying the manner in which the self-similarities in the de-

1 A similarity index in which the similarity measure is computed as a sum over grid points or an integral
over all space of the product of molecular field functions is known as a cumulative similarity index.
An alternative approach to field-based similarity employs a discrete similarity index, which gives the
similarity at individual grid points in space. The overall similarity is then computed as the average of
the discrete values. The theory developed in the present paper applies only to cumulative indices in
which the similarity measure is given as an integral. For more information on discrete similarity indices,
see [14,15,28].
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nominator are combined. In the Carbó index, for example, the denominator is given

by the geometric mean of the two self-similarities,
√∫

ρ2
i dV ·

√∫
ρ2
j dV . Two ad-

ditional indices in use today are those defined by Hodgkin and Richards [21] and by
Petke [28]. The respective denominators of these indices are based upon the arith-
metic mean, 1

2(
∫
ρ2
i dV + ∫

ρ2
j dV ), and maximum, max(

∫
ρ2
i dV,

∫
ρ2
j dV ), of the self-

similarities of the ith and j th molecules. Carbó et al. [38–41] have also defined more
elaborate “quantum” similarity measures and indices, which are defined in terms of inte-
grals involving electron densities and assorted quantum mechanical operators. Alterna-
tive approaches used to determine similarity include those based on the distance between
molecular field functions [42,43], or more general forms of similarity indices utilizing
set based [44] or graph theoretic [45] approaches, which will not be considered further
in this work.

Numerous applications of steric and electrostatic field-based similarity have been
published in the last several years. Many involve determination of an optimal molecular
superposition that maximizes the value of the similarity index as a function of the relative
positions and orientations of the molecules being compared. This is often carried out by
simultaneously maximizing both steric and electrostatic similarity using a weighted sum
of steric and electrostatic similarity indices [46–54]. Other studies involve computing
the similarity of a series of overlaid structures for use as descriptors in 3D QSAR stud-
ies [55–63]. In both cases, numerical values of similarity indices have been employed as
data, without a fundamental understanding of the mathematical properties of the indices
used.

The present work describes a general theory of a class of field-based molecular
similarity indices that includes those given by Carbó, Hodgkin and Richards, and Petke.
Rigorous bounds, inequalities, and other mathematical relationships among the indices
are developed. Additionally, a more general form of similarity index, based upon a one-
parameter family of functions called generalized means [64], is derived and fully char-
acterized. This work serves to elucidate the fundamental characteristics of field-based
similarity indices, and to put them on a mathematically rigorous footing. Moreover,
the analysis provided here should also lead to a clearer understanding of the numerical
properties of field-based similarity.

2. Field-based similarity indices

2.1. Overview of similarity indices

The general form taken by molecular field-based similarity indices considered in
the present analysis is the ratio

Sij = �ij

�ij

, (1)



254 G.M. Maggiora et al. / Analysis of field-based molecular similarity indices

where the similarity measure, �ij , is given by the inner product

�ij =
∫
Fi(r) · Fj (r) d3r (2)

and Fi and Fj are field functions for the ith and j th molecules, respectively. The de-
nominator, �ij , is made up of a specific combination of the self-similarities, �ii and�jj ,
and defines a particular similarity index. The self-similarities, which are just the squared
norms of the field functions, always satisfy the relation �ii > 0, and therefore the sign
of Sij is determined by that of �ij . For the material presented in sections 2.1–2.5, it is
assumed that the field functions are non-negative, as is the case for steric fields, and thus
that �ij � 0. The case in which �ij may take on negative values, as may occur, for
example, in MEP fields, is considered in section 2.6.

Three of the indices most commonly used in field-based similarity calculations are
those developed by Carbó et al. [17], Hodgkin and Richards [21], and Petke [28], and
are given respectively by

Cij = �ij

(�ii ·�jj )1/2 , (3)

Hij = �ij
1
2 (�ii +�jj )

, (4)

Pij = �ij

max(�ii,�jj )
, (5)

where the denominators correspond, respectively, to the geometric mean, the arith-
metic mean, and the maximum of the self-similarities �ii and �jj . All three indices
are bounded by zero and unity (see section 2.4 for further discussion), i.e.

0 � Cij ,Hij ,Pij � 1. (6)

As will be shown in section 3, a whole family of field-based similarity indices can
be defined simply by modifying the denominator appropriately. Along this line, a new
index based upon the harmonic mean of �ii and �jj is given by

H ∗ij =
�ij

1
1
2(1/�ii + 1/�jj )

. (7)

Moreover, by choosing �ij as min(�ii,�jj ), an alternative to the usual Petke similarity
index Pij is obtained, i.e.,

P ∗ij =
�ij

min(�ii,�jj )
, (8)

which plays an important role in the subsequent analysis. From equations (5) and (8) it
is clear that

Pij � P ∗ij . (9)
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As will be discussed in detail in section 2.4, both H ∗ij and P ∗ij are bounded from below
by zero but are unbounded from above.

Additionally, it should be noted that all of the above indices are symmetric since
both the numerator and denominator of equation (1) are symmetric, i.e., �ij = �ji and
�ij = �ji . The former follows from the symmetry of the inner product and the latter
from the symmetry of the appropriate mean.

2.2. Ordering of similarity indices

Without loss of generality it can be assumed that

�ii � �jj . (10)

The self-similarities of ith and j th molecules are then related by the scale factor µ,

�jj = µ ·�ii, (11)

where 0 < µ � 1.
A fundamental ordering of the different similarity indices is obtained when the

value of the numerator, �ij , in all of the indices is the same. In such cases, the ordering
is determined solely by the terms in the denominator. Substituting equation (11) into the
denominators of the set of similarity indices P ∗ij , H

∗
ij , Cij ,Hij and Pij yields

P ∗ij ⇐⇒min(�ii,�jj ) = �jj = µ ·�ii, (12)

H ∗ij⇐⇒
1

1
2 (�

−1
ii +�−1

jj )
= 2µ

1+ µ ·�ii, (13)

Cij ⇐⇒ (�ii ·�jj )1/2 = √µ ·�ii, (14)

Hij⇐⇒ 1

2
(�ii +�jj ) = 1+ µ

2
·�ii, (15)

Pij ⇐⇒max(�ii,�jj ) = 1 ·�ii. (16)

Since 0 < µ � 1, the following inequality holds:

µ � 2µ

1+ µ � √µ � 1+ µ
2

� 1, (17)

which is clear from figure 1.
Multiplying all terms by �ii yields for the respective denominators

µ ·�ii � 2µ

1+ µ ·�ii � √µ ·�ii � 1+ µ
2
·�ii � 1 ·�ii, (18)

so that the following inequality holds for the five similarity indices

Pij � Hij � Cij � H ∗ij � P ∗ij . (19)

Equality obtains when �ii = �jj = �ij .
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2.3. Relationships among similarity indices

Using equation (11), a variety of relationships among the different similarity in-
dices can be derived as functions of µ and specific similarity indices: Sij = f (µ,Xij ),
where Sij and Xij = Pij ,Hij , Cij ,H ∗ij , or P ∗ij . Table 1 summarizes these relationships
with respect to Pij ,Hij , Cij ,H ∗ij and P ∗ij , five indices which have special significance in
terms of the generalized means formalism described in section 3.

Equations (u)–(y) of table 1 can be rearranged as ratios with respect to P ∗ij , i.e.,

Pij

P ∗ij
: Hij
P ∗ij
: Cij
P ∗ij
: H

∗
ij

P ∗ij
: P
∗
ij

P ∗ij
= µ : 2µ

1+ µ :
√
µ : 1+ µ

2
: 1. (20)

Interestingly, these ratios yield functions of µ that are identical to those given in equa-
tion (17) and depicted in figure 1. Thus, the behavior of these ratios is clearly illustrated
in the figure. It should also be noted that since the ratios are independent of �ij they
depend only on the self-similarities.

Figure 1. Ratios of the various simlarity indices with respect to P ∗ij , as given by equation (20).
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2.4. Bounds on similarity indices

Although the inequalities presented in equation (19) establish an ordering of the
similarity indices, rigorous bounds have not been determined for all of these quantities.
To do this, the Schwartz inequality [65], which can be written in terms of the similarity
measure and self-similarities as

|�ij |2 � �ii ·�jj , (21)

is used. Recalling that �ij � 0 and taking the square root of both sides of equation (21)
yields, upon rearranging, the upper bound for the Carbó index

Cij = �ij√
�ii ·

√
�jj

� 1. (22)

Thus, it follows that

0 � Cij � 1, (23)

where the lower bound occurs when �ij = 0. Combining the latter expression with
equation (19) leads to the overall relationship

0 � Pij � Hij � Cij � 1. (24)

As noted earlier, both H ∗ij and P ∗ij are bounded from below by zero and are unbounded
from above. To prove that H ∗ij is unbounded from above, it can be shown from equa-
tions (l) and (n) in table 1 that

Hij ·H ∗ij = C2
ij � 1. (25)

Rearranging the terms in equation (25) gives

H ∗ij = Cij ·
(
Cij

Hij

)
. (26)

Upon substitution of equation (h) from table 1, equation (26) may be rewritten as

H ∗ij = Cij ·
(

1+ µ
2
√
µ

)
, (27)

which, using the expression given in equation (23), leads to the inequality

H ∗ij � 1+ µ
2
√
µ
. (28)

Taking the limit as µ→ 0 yields

lim
µ→0

H ∗ij � lim
µ→0

(
1+ µ
2
√
µ

)
→∞, (29)
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which shows that H ∗ij is indeed unbounded. Since H ∗ij � P ∗ij , as shown in equation (19),
it follows that P ∗ij is also unbounded, i.e.,

P ∗ij �∞, (30)

so that

0 � H ∗ij � P ∗ij �∞. (31)

A more general treatment of the bounds of similarity indices of the form given by equa-
tion (1) is presented in section 3.

2.5. Similarity indices as means of other similarity indices

An examination of the relationships given in table 1 suggests that other relation-
ships may also exist among the various similarity indices. For example, consider the
geometric mean of Pij and P ∗ij , which with equation (e) from table 1 may be written as

(
Pij · P ∗ij

)1/2 =
(
Pij · 1

µ
Pij

)1/2

, (32)

or
(
Pij · P ∗ij

)1/2 = 1√
µ
· Pij . (33)

Substituting equation (c) from table 1 into equation (33) yields the desired relation
(
Pij · P ∗ij

)1/2 = Cij . (34)

Now consider the arithmetic mean. Again employing equation (e) from table 1
yields

1

2

(
Pij + P ∗ij

) = 1

2

(
Pij + 1

µ
Pij

)
, (35)

or

1

2

(
Pij + P ∗ij

) =
(

1+ µ
2µ

)
· Pij , (36)

which upon substitution of equation (d) from table 1 gives

1

2

(
Pij + P ∗ij

) = H ∗ij . (37)

Lastly, consider the harmonic mean of Pij and P ∗ij , which with equation (e) from
table 1 may be expressed as

1
1
2 (1/Pij + 1/P ∗ij )

= 1
1
2 (1/Pij + µ/Pij )

, (38)
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or

1
1
2 (1/Pij + 1/P ∗ij )

=
(

2

1+ µ
)
· Pij . (39)

Upon substitution of equation (b) from table 1 the desired relation

1
1
2(1/Pij + 1/P ∗ij )

= Hij (40)

is obtained. It is interesting to note that, unlike the relationships listed in table 1, the
“means” relations given by equations (34), (37), and (40) are independent of µ. More-
over, the relations illustrated in this section suggest the possibility of other relations
among these similarity indices, which may also be of interest such as the one shown in
equation (25) relating the product of Hij and H ∗ij to Cij . Further developments on this
topic will be covered in section 3.2.

2.6. Considerations for the case of negative similarity

In order to avoid confusion in the development of relationships for bounds and in-
equalities, the previous discussion was restricted to the case in which the value of �ij ,
and thus the values of all of the similarity indices discussed up to now are greater than
zero. In this section the case where �ij < 0 is treated specifically. Relationships pre-
sented in the previous sections that do not hold are identified and alternative relationships
are provided where appropriate. In this connection, it should be noted that the “pairwise”
relationships given in table 1 are valid for both positive and negative similarity.

In sections 2.1 and 2.2, the inequalities given by equations (6), (9), and (19) are
invalid when �ij < 0. However, for the case of negative similarity, applying the same
arguments used to derive equation (19) yield an expression with the order of terms re-
versed,

Pij � Hij � Cij � H ∗ij � P ∗ij . (41)

The upper and lower bounds given previously in section 2.4 are also invalid, but
rigorous bounds for negative similarity may be obtained. Using the Schwartz inequality,
equation (21), we may write

|�ij | �
√
�ii ·

√
�jj , (42)

which upon rearranging terms gives

|�ij |√
�ii ·

√
�jj

� 1. (43)

Since �ij < 0, |�ij | = −�ij , so that

−�ij√
�ii ·

√
�jj

� 1, (44)
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which, in turn, leads to the lower bound for the Carbó index

Cij = �ij√
�ii ·

√
�jj

� −1. (45)

Combining this result with the inequality given by equation (41) yields the relation

−1 � Cij � Hij � Pij � 0. (46)

The procedure used to determine the lower bound forH ∗ij when�ij < 0 is identical
to that employed in section 2.4. Combining equation (27) with equation (46) leads to the
inequality

H ∗ij � −
(

1+ µ
2
√
µ

)
. (47)

Taking the limit of equation (47) as µ→ 0 gives

lim
µ→0

H ∗ij � lim
µ→0

(
−1+ µ

2
√
µ

)
→−∞, (48)

showing that H ∗ij is unbounded from below. Therefore, since according to equation (41)
P ∗ij � H ∗ij , it follows that

−∞ � P ∗ij � H ∗ij � 0. (49)

Importantly, the expression for the geometric mean of Pij and P ∗ij derived from
equations (32)–(34) does not apply in the case of negative similarity. However, equa-
tion (34) may be replaced by the expression

(
Pij · P ∗ij

)1/2 = |Cij |, (50)

which holds for both positive and negative similarity. The other expressions for the arith-
metic and harmonic means of Pij and P ∗ij given by equations (37) and (40), respectively,
are valid for both positive and negative similarity.

3. Generalization of �ij

3.1. Generalized and specific similarity indices

As noted in section 2, it is the form of the self-similarity normalization terms in
the denominator, �ij , that distinguish the various similarity indices from one another. In
the following it is shown that a generalization of �ij , which is based upon a generalized
means function [64],

�ij (λ) =
(
�λii +�λjj

2

)1/λ

(51)
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can be used to define a one-parameter family of similarity indices,

Sij (λ) = �ij

�ij (λ)
. (52)

Moreover, through appropriate choices of the parameter λ and suitable limiting proce-
dures, expressions for the denominators used in the five similarity indices discussed in
section 2 may be obtained. The easiest to derive is the denominator of Hodgkin–Richards
index Hij , which can be obtained simply by setting λ = 1,

�ij (1) = �ii +�jj
2

. (53)

Similarly, taking λ = −1 yields the denominator of the similarity index H ∗ij ,

�ij (−1) = 1
1
2(�

−1
ii +�−1

jj )
. (54)

More sophisticated limiting processes are needed to obtain the remaining denom-
inators. For example, to generate the “Carbó denominator” requires taking the limit as
λ→ 0 of equation (51). To accomplish this, we first take the natural logarithm of both
sides of equation (51) and then the limit as λ→ 0

�ij (0)= lim
λ→0

�ij (λ), (55)

lim
λ→0

ln�ij (λ)= lim
λ→0

ln(�λii +�λjj )− ln 2

λ
. (56)

Using L’Hospital’s rule yields

lim
λ→0

ln�ij (λ) = lim
λ→0

�λii ln�ii +�λjj ln�jj

�λii +�λjj
(57)

which gives upon taking the limit

lim
λ→0

ln�ij (λ) = ln�ii + ln�jj
2

= ln(�ii ·�jj)
2

= ln(�ii ·�jj )1/2 (58)

finally yielding the desired relationship

lim
λ→0

�ij (λ) = (�ii ·�jj )1/2. (59)

Determining the two denominators employed in the similarity indices Pij and P ∗ij
involves taking the limits as λ→∞ and λ→−∞, respectively. Thus, for Pij

�ij (∞) = lim
λ→∞�ij (λ), (60)

or

�ij (∞) = lim
λ→∞

(
�λii +�λjj

2

)1/λ

. (61)
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Since it can be assumed without loss of generality that �ii � �jj , equation (11) can be
substituted into the above equation yielding

�ij (∞) = lim
λ→∞

(
�λii + µλ ·�λii

2

)1/λ

(62)

which upon rearrangement gives

�ij (∞) = lim
λ→∞�ii ·

(
1+ µλ

2

)1/λ

. (63)

In taking the limit the term [(1+µλ)/2]1/λ goes to unity (recall that 0 < µ � 1) so that

�ij (∞) = �ii = max(�ii,�jj ), (64)

which is what was to be proved.
To determine the denominator of P ∗ij a procedure similar to that used for Pij is

employed, but the limit of equation (51) as λ→−∞ is taken. Hence,

�ij (−∞) = lim
λ→−∞�ij (λ) (65)

so that

�ij (−∞) = lim
λ→−∞

(
�λii +�λjj

2

)1/λ

. (66)

As before, substituting equation (11) into the above equation yields

�ij (−∞) = lim
λ→−∞

(
µ−λ ·�λjj +�λjj

2

)1/λ

. (67)

Rearranging terms gives

�ij (−∞) = lim
λ→−∞�jj ·

(
µ−λ + 1

2

)1/λ

. (68)

Upon taking the limit, we obtain the desired result

�ij (−∞) = �jj = min(�ii,�jj ). (69)

To summarize, equations (51) and (52) have been used to define a generalized sim-
ilarity index, Sij (λ), which is characterized by the parameter λ, where −∞ � λ � ∞.
It was shown that the specific similarity indices Hij and H ∗ij were derivable from the
generalized index by choosing λ as +1 and −1, respectively. Furthermore, the indices
Cij , Pij and P ∗ij were shown to have special significance in that they correspond to lim-
iting cases for Sij (λ), as λ approaches 0,∞, and −∞, respectively. These relationships
lead naturally to an alternate notation for λ �= 0, in which conjugate pairs of generalized
indices, {Sij (ω), Sij (−ω)}, where ω > 0, are defined. Thus, {Hij ,H ∗ij } and {Pij , P ∗ij }
are conjugate pairs of indices with ω = 1 and ω = ∞, respectively, while Cij may be
considered to be a self-conjugate index, Cij = C∗ij , since ω = 0 in this case.
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3.2. Relationships among generalized similarity indices

In section 2.5, expressions for the geometric, arithmetic, and harmonic means of
Pij and P ∗ij were derived in terms of other specific similarity indices. In this section, the
possibility of finding similar relationships for {Sij (ω), Sij (−ω)} is examined. In the case
of the geometric mean, consider the product

Sij (ω) · Sij (−ω) = �ij

((�ωii +�ωjj)/2)1/ω
· �ij

((�−ωii +�−ωjj )/2)−1/ω
, (70)

which by direct manipulation becomes

Sij (ω) · Sij (−ω) =
�2
ij

((�ωii +�ωjj)/(�−ωii +�−ωjj ))1/ω
, (71)

and reduces to

Sij (ω) · Sij (−ω) =
�2
ij

�ii ·�jj = C
2
ij . (72)

Taking the positive square root of both sides of equation (72) gives a general relation for
the geometric mean [

Sij (ω) · Sij (−ω)
]1/2 = |Cij |, (73)

that is independent of the parameter µ and is valid for all values of �ij . This demon-
strates the significance of the Carbó formula as a mean value in the family of generalized
similarity indices.

For the arithmetic and harmonic means of Sij (ω) and Sij (−ω), no simple expres-
sion may be obtained that is independent of the parameter µ. Previously, it was shown
that the arithmetic mean of Pij and P ∗ij was equal to H ∗ij . To derive an analogous expres-
sion for Sij (ω) and Sij (−ω), we begin by substituting equation (11) into the expression
for Sij (ω) to give

Sij (ω) = �ij

�ii
·
(

2

1+ µω
)1/ω

, (74)

or,

Sij (ω) = Pij ·
(

2

1+ µω
)1/ω

. (75)

A similar substitution of equation (11) into the formula for Sij (−ω) yields

Sij (−ω) = �ij

�ii
·
(

1+ µω
2µω

)1/ω

, (76)

or

Sij (−ω) = P ∗ij ·
(

1+ µω
2

)1/ω

. (77)
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Solving equations (75) and (77) for Pij and P ∗ij , respectively, and substituting into equa-
tion (37) gives

1

2

[(
1+ µω

2

)1/ω

· Sij (ω)+
(

2

1+ µω
)1/ω

· Sij (−ω)
]
= H ∗ij . (78)

Thus, for the general case, the simple arithmetic mean has been replaced by the mean of
weighted indices. Similarly for the harmonic mean, by utilizing equations (75) and (77)
along with equation (40), the following weighted mean expression is obtained.

1
1

2

[
1

((1+ µω)/2)1/ω · Sij (ω) +
1

(2/(1+ µω))1/ω · Sij (−ω)
] = Hij . (79)

3.3. Bounds and ordering of generalized similarity indices

The upper and lower bounds as well as the ordering of Sij (ω) for various values
of ω are now investigated. From equations (51) and (52), it is clear that Sij (ω) = 0 if
�ij = 0, and that Sij (ω) = 1 when �ij = �ii = �jj > 0. In addition, for �ij > 0, it is
easy to show that Sij (ω2) < Sij (ω1) if ω2 > ω1, which holds provided

(
�
ω1
ii +�ω1

jj

2

)1/ω1

�
(
�
ω2
ii +�ω2

jj

2

)1/ω2

. (80)

That this is valid is seen by substituting equation (11) into equation (80), giving(
1+ µω1

2

)1/ω1

�
(

1+ µω2

2

)1/ω2

, (81)

which in turn may be verified by inspection. Considering these results along with the
upper bound for the Carbó index, equation (22), and recalling that Cij = limω→0 Sij (ω),
establishes that

0 � Sij (ω2) � Sij (ω1) � 1. (82)

For the case in which �ij < 0, a similar argument leads to the expression

−1 � Sij (ω1) � Sij (ω2) � 0. (83)

The latter two equations are consistent with the bounds obtained earlier for Pij and Hij
in equations (24) and (46).

For Sij (−ω),

Sij (−ω) = �ij

((�−ωii +�−ωjj )/2)−1/ω
, (84)

or

Sij (−ω) = �ij

(2�ωii ·�ωjj/(�ωii +�ωjj ))1/ω
, (85)
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which, using equation (11), may be converted to

Sij (−ω) = �ij

�ii · (2µω/(1+ µω))1/ω . (86)

Clearly, Sij (−ω) = 0 if �ij = 0 and limµ→0 Sij (−ω) → +∞ or −∞, as �ij > 0 or
�ij < 0, respectively. Moreover, for ω2 > ω1 > 0, the following inequality holds for
0 < µ � 1: (

2µω2

1+ µω2

)1/ω2

�
(

2µω1

1+ µω1

)1/ω1

. (87)

Thus, for �ij > 0,

0 � Sij (−ω1) � Sij (−ω2) �∞, (88)

and, for �ij < 0,

−∞ � Sij (−ω2) � Sij (−ω1) � 0. (89)

4. Summary and conclusions

A general formalism has been presented that incorporates the entirety of all field-
based similarity indices of the form Sij = �ij /�ij . The numerator represents the
inner-product (i.e., overlap) of the field functions, Fi and Fj , for the ith and j th mole-
cules, respectively, and the denominator is given by a suitable form of mean of the self-
similarities �ii and �jj . More specifically, the denominators of the well-known Carbó
(Cij ), Hodgkin and Richards (Hij ), and Petke (Pij ) similarity indices are obtained from
the respective geometric mean, arithmetic mean, and maximum of the self-similarities.
Two new indices, H ∗ij and P ∗ij , whose denominators are the harmonic mean and mini-
mum of the self-similarities, respectively, were also defined. For a fixed value of �ij ,
it was found that the set of similarity indices {Pij ,Hij , Cij ,H ∗ij , P ∗ij } is fundamentally
ordered according to the inequality Pij � Hij � Cij � H ∗ij � P ∗ij when �ij � 0, while
the reverse ordering holds when �ij � 0. Moreover, by applying the Schwartz inequal-
ity, rigorous bounds were established for all of the indices. These bounds, which hold
for any value of �ij , are given by −1 � Pij ,Hij ,Cij � 1 and −∞ � H ∗ij ,P

∗
ij �∞.

Using the general relation �jj = µ · �ii , where 0 < µ � 1, a complete set of
equations was derived that give relationships between all pairs of indices as a function
of µ. In addition, it was shown that Hij , |Cij |, and H ∗ij are equal to the respective
harmonic, geometric, and arithmetic means of Pij and P ∗ij .

Finally, it was demonstrated that the entire set of field-based similarity indices
can be generated from a one-parameter family of functions, called a generalized mean,
through proper choice of the parameter value and suitable limiting procedures. Conju-
gate pairs of generalized similarity indices, {Sij (ω), Sij (−ω)}, were defined in terms of a
positive parameter ω, and rigorous bounds, ordering, and inter-index relationships were
derived. Furthermore, it was shown that {Hij ,H ∗ij } and {Pij , P ∗ij } are conjugate pairs of
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indices with ω equal to 1 and ∞, respectively, while Cij is a self-conjugate index, i.e.
Cij = C∗ij .

The generalization of field-based similarity indices, coupled with the relationships
among indices that have been developed in the present work, place the basic theory of
these indices on a more unified and mathematically rigorous footing. This establishes
a foundation for a better understanding of the qualitative and quantitative aspects of
field-based molecular similarity, and provides a means for a numerical characterization
of the relative performance of various field-based similarity indices. Such knowledge
may be useful in interpreting the results of applications such as QSAR studies in which
numerical values of similarity indices are used as data.
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